Reactive armour is a type of vehicle armour used in protecting vehicles, especially modern tanks, against and hardened kinetic energy penetrators. The most common type is explosive reactive armour (ERA), but variants include self-limiting explosive reactive armour (SLERA), non-energetic reactive armour (NERA), non-explosive reactive armour (NxRA), and electric armour. NERA and NxRA modules can withstand multiple hits, unlike ERA and SLERA.
When a shaped charge strikes the upper plate of the armour, it detonates the inner explosive, releasing blunt damage that the tank can absorb.
Reactive armour is intended to counteract anti-tank munitions that work by piercing the armour and then either killing the crew inside, disabling vital mechanical systems, or creating spalling that disables the crew—or all three.
Reactive armour can be defeated with multiple hits in the same place, as by tandem-charge weapons, which fire two or more in rapid succession. Without tandem charges, hitting precisely the same spot twice is much more difficult.
The earliest trials were done with small charges able to defeat 2 inch of steel plate which were readily defeated by a layer of explosive (Baratol, R.D.X., Cordite, etc.) or a vigorous oxidising medium. Subsequent trials with British No.68 and American M9A1 grenades were carried out. However trials were done in few numbers which caused varied results. A mixture of Sodium and Potassium Nitrates explosives was seen as the most practical option due to their casting properties. The mixture acted as an oxidiser which may explode when dispersed and heated. The Explosives Manufacturing Practices Laboratory seemingly developed a more middle road between chemical armor and explosive reactive armor concepts to counter the hollow charge threat.
The idea of counterexplosion ( kontrvzryv in Russian) in armour was proposed in the USSR by the Scientific Research Institute of Steel (NII Stali) in 1949 by academician Bogdan Vjacheslavovich Voitsekhovsky. Explosive Reactive Armour (ERA) Evolution and Impact on Tank Warfare. Published October 26, 2022. Matteo Zanotti. Cited May 27, 2025. The first pre-production models were produced during the 1960s. However, insufficient theoretical analysis during one of the tests resulted in all of the prototype elements being detonated. For a number of reasons, including the aforementioned accident and a belief that Soviet tanks had sufficient armour, the research was ended. No more research was conducted until 1974, when the Ministry of the Defensive Industry announced a contest to find the best tank protection .
Picatinny Arsenal, an American military research and manufacturing facility experimented with testing linear cutting charges against anti-tank ammunition in the 1950s, and concluded that they may be effective with an adequate sensing and triggering mechanism, but noted "tactical limitations"; the report was declassified in 1980.
A West German researcher, Manfred Held, carried out similar work with the IDF in 1967–1969. Reactive armour created on the basis of the joint research was first installed on Israeli tanks during the 1982 Lebanon war and was judged very effective.
The disruption is attributed to two mechanisms. First, the moving plates change the effective velocity and angle of impact of the shaped charge jet, reducing the angle of incidence and increasing the effective jet velocity versus the plate element. Second, since the plates are angled compared to the usual impact direction of shaped charge warheads, as the plates move outwards the impact point on the plate moves over time, requiring the jet to cut through fresh plates of material. This second effect greatly increases the effective plate thickness during the impact.
To be effective against kinetic energy projectiles, ERA must use much thicker and heavier plates and a correspondingly thicker explosive layer. Such heavy ERA, such as the Soviet-developed Kontakt-5, can break apart a penetrating rod that is longer than the ERA is deep, again reducing penetration capability. Such ERA is ineffective against modern armor-piercing fin-stabilized discarding sabot (APFSDS) projectiles, however, due to their depleted uranium construction.
An important aspect of ERA is the brisance, or detonation speed of its explosive element. A more brisant explosive and greater plate velocity will result in more plate material being fed into the path of the oncoming jet, greatly increasing the plate's effective thickness. This effect is especially pronounced in the rear plate receding away from the jet, which triples in effective thickness with double the velocity.
ERA also counters explosively forged projectiles, as produced by a shaped charge. The counter-explosion must disrupt the incoming projectile so that its momentum is distributed in all directions rather than toward the target, greatly reducing its effectiveness.
Explosive reactive armour has been valued by the Soviet Union and its now-independent component states since the 1980s, and almost every tank in the eastern-European military inventory today has either been manufactured to use ERA or had ERA tiles added to it, including even the T-55 and T-62 tanks built forty to fifty years ago, but still used today by reserve units. The U.S. Army uses reactive armour on its Abrams tanks as part of the TUSK (Tank Urban Survivability Kit) package and on Bradley vehicles and the Israelis use it frequently on their American built M60 tanks.
ERA tiles are used as add-on (or appliqué) armour to the portions of an armoured fighting vehicle that are most likely to be hit, typically the front (glacis) of the hull and the front and sides of the turret. Their use requires that a vehicle be fairly heavily armoured to protect itself and its crew from the exploding ERA.
A further complication to the use of ERA is the inherent danger to anyone near the tank when a plate detonates, though a high-explosive anti-tank (HEAT) warhead explosion would already cause great danger to anyone near the tank. Although ERA plates are intended only to bulge following detonation, the combined energy of the ERA explosive, coupled with the kinetic or explosive energy of the projectile, will frequently cause the plate to explode, creating shrapnel that risks injuring or killing bystanders. Thus, infantry must operate some distance from vehicles protected by ERA in combined arms operations.
Since the inner liner is non-explosive, the bulging is less energetic than on explosive reactive armour, and thus offers less protection than a similarly-sized ERA. However, NERA and NxRA are lighter, safe to handle, and safer for nearby infantry; can theoretically be placed on any part of the vehicle; and can be packaged in multiple spaced layers if needed. A key advantage of this kind of armour is that it cannot be defeated by tandem warhead shaped charges, which employ a small forward warhead to detonate ERA before the main warhead fires.
Another electromagnetic alternative to ERA uses layers of plates of electromagnetic metal with silicone spacers on alternate sides. The damage to the exterior of the armour passes electricity into the plates, causing them to magnetically move together. As the process is completed at the speed of electricity the plates are moving when struck by the projectile, causing the projectile energy to be deflected whilst the energy is also dissipated in parting the magnetically attracted plates.
|
|